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composite OpMon {
param
expression<float32> Sthreshold :
(float32) getSubmissionTimeValue("threshold");
type
UsageDetailinfo = tuple<int32 srcindex, timestamp time,
int32 trafficSre, int32 trafficDst, int32 appld,
int32 appVersion, float3Z flewAmount>;
UsageSummaryinfo = tuple<int32 appld, floati2 flowAmount,
timestamp time>;

graph
stream<UsageDetailinfo> DataUsage = TCPSource() { 101
param
role: server; port: 40000; format: csv,
1
stream<UsageSummaryinfo> UsageSummary = Aggregale (DataUsage) {
window
Datalsage : tumbling, delta(time, 60.0), partitioned;
param
partitionBy: applD,
output
UsageSummary: flowAmount = Sum({flowAmount), 102
)

stream<UsageSummaryinfo> OverusingApps = Filter() {
param 103
filter: flowAmount > Sthreshold,;

}
(} as Sink = TCPSink{OverusingApps} {
param
role: client; address: "10.0.0.2" ; port: 40001;

FIG. 2
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procedure inft()
T P&—1; [£—G; 401 I

Vie .1 (e ;74 ) |
VJ‘E[U.KL*) (Cl<_ frue; P,-6—1) |
§¢—0.1+(1.0- @)+ 0.9

.
L)

47| FIG. 4B

procedure getNumberOfChannels(T,C)
I* (P3) and (P4): congestion and throughput adapt */ |
I, ¢—checkloadChangeViaCongestion(C) |
Iy <—checklLoadChangeViaThroughput(T)
if I, = LessLoad or l; = LessLoad

Vicqo.1) Ci < false; T; -0 402 ||

if I, = MoreLoad or Iy = MoreLoad |
View.1 Cietrue; T " ¢— oo I

I* update info on current level I
PL&— P, PP +1 -
T «T; Cx—C !

if T~ = nan then T<—T l

| I" update the current level "l [

r¢—(P,.1=P;-1) and C;.1 and C; and T <7}
if r* (P5). remofe congestion ™
T, nam L$— L1 !
else if C I*A (P1): expand *1 |
ifL<l*-land T y4>T
Trr<—nan; Lé—L +1
else I* (P2): contract * — |
if L>0 and —C;_ |
T & nam [$— -1 |
return Ny *(P6): rapid scafing */

FIG. 4A
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procedure checklLoadChangeViacongestion(C)
ifPL=P- 1 and CL;éC
return C ? MorelLoad ; LessLoad
ifP 41=P-1and C;4qand-C
return LessLoad 403-A
if PL-1 =P -1 and -CL_ 1 and-C
return MoreLoad
return Unknown
Require: T: current throughput

procedure checkLoadChangeviathroughput(T)
if Py =P-1
fT<T/
if '(T‘,_*'- N)>s= (N -Njp )+ (TL‘ /NL)
return LessLoad
else
if(T-T7) > s (N yq) - Np) * (T IN)
return MoreLoad
if P 4q=P-1and T> T, 4
return MoreLoad 403-B
ifPq=P-1and T< T}
return Lessl oad

O EE F M 3 S N EEE F EEE P BN P WS R BN F EEE U ke 4 Amwn § PSS R M W MmN M R N N B 4 BN | BN 4 e § EE K BN R s R mmm n

FIG. 4B
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procedure migrate(i,N,Si,H)

Hy <—H(N)

I* Lend phase *I

for each store sf‘ € Sido

Vi je [0.N) A, je—{d HN(z) = ATesk)
Vjske sfIAL,

SaveA'-f  ito backing store
verticalBarrier()

I* Borrow phase *1

for each store si-{e Si do

Vi, j€[0..N) retrieveAf_é ; from backing store
Vjs’,kesf-‘ UAj-‘_,.),-

verticalBarrier()

if i=0

horizontalBarrier()

FIG. 5
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1
ELASTIC AUTO-PARALLELIZATION FOR
STREAM PROCESSING APPLICATIONS
BASED ON A MEASURED THROUGHPUT
AND CONGESTION

BACKGROUND

1. Technical Field

The present disclosure relates to the data stream process-
ing, and more particularly to data processing using parallel
elastic operators.

2. Discussion of Related Art

As the world becomes more interconnected and instru-
mented, there is a deluge of data coming from various soft-
ware and hardware sensors in the form of continuous streams.
Examples can be found in several domains, such as financial
markets, telecommunications, surveillance, manufacturing,
and healthcare. In all of these domains, there is an increasing
need to gather, process, and analyze these data streams to
extract insights as well as to detect emerging patterns and
outliers. More importantly, this analysis often needs to be
performed in near real-time.

Stream computing is a computational paradigm that
enables carrying out of analytical tasks in an efficient and
scalable manner. By taking the incoming data streams
through a network of operators placed on a set of distributed
hosts, stream computing provides an on-the-fly model of
processing. The frequent need for handling large volumes of
live data in short periods of time is a major characteristic of
stream processing applications. Thus, supporting high
throughput processing is an important requirement for
streaming systems. It requires taking advantage of multiple
host machines to achieve scalability. This requirement will
become even more prominent with the ever increasing
amounts of live data available for processing. The increased
affordability of distributed and parallel computing, thanks to
advances in cloud computing and multi-core chip design, has
made this problem tractable. However, this requires language
and system level techniques that can effectively locate and
efficiently exploit parallelization opportunities in stream pro-
cessing applications.

BRIEF SUMMARY

According to an exemplary embodiment of the invention, a
method of adjusting a data parallel region of a stream pro-
cessing application includes: measuring congestion of each
parallel channel of the data parallel region, measuring a total
throughput of all the parallel channels, and adjusting the
number of parallel channels based on the current measured
congestion and throughput.

In an embodiment, each parallel channel comprises a com-
puter operator and all the computer operators perform a same
function. In an embodiment, the adjusting includes adjusting
the number of parallel channels based on the current mea-
sured congestion and throughput and previous historical mea-
surements of the congestion and throughput.

According to an exemplary embodiment of the invention, a
method of adjusting a level of parallelism of an application
operating on a system includes determining a current number
of operators of the application for operating on a same task,
determining a congestion level of the system, increasing a
current number of operators of the application if the conges-
tion level exceeds a threshold, and decreasing the current
number of operators if the congestion level does not exceed
the threshold.
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In an embodiment, the method includes determining
whether the congestion level of the system has improved after
increasing the current number of operators and decreasing the
current number of operators if the congestion level has not
improved.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Exemplary embodiments of the invention can be under-
stood in more detail from the following descriptions taken in
conjunction with the accompanying drawings in which:

FIG. 1(a) illustrates an exemplary streaming application.

FIG. 1(b) illustrates the exemplary streaming application
with a parallel data region.

FIG. 2 illustrates exemplary code for an exemplary opera-
tor in the parallel data region.

FIG. 3 illustrates a method of adjusting a level of a paral-
lelism in an application according to an exemplary embodi-
ment of the invention.

FIG. 4 illustrates exemplary code that may be used to
implement the method of FIG. 3.

FIG. 5 illustrates exemplary code that may be used to
migrate state information among operators of the parallel data
region.

FIG. 6 illustrates barriers used to prevent the level of par-
allelism from being adjusted until after the operators have
migrated their state information.

FIG. 7 illustrates an embodiment where a shared storage is
used to exchange state information among the operators
according to an exemplary embodiment of the invention.

FIG. 8 illustrates a method of adjusting a level of parallel-
ism in an application according to an exemplary embodiment
of the invention.

FIG. 9 illustrates an example of a computer system capable
of implementing methods and systems according to embodi-
ments of the disclosure.

DETAILED DESCRIPTION

Exemplary embodiments of the invention provide lan-
guage and system level techniques that can effectively locate
and efficiently exploit parallelization opportunities in stream
processing applications.

A streaming application may be structured as a directed
graph where vertices are operators and edges are data
streams. For example, a vertex or node of the graph performs
an operation on input data and provides a result of the opera-
tion to its output edge as an output data stream. A system can
scale a streaming application by deciding how the application
graph will be mapped to a set of available hosts.

Auto-parallelization is an effective technique that can be
used to scale a streaming application in a transparent manner.
It involves detecting parallel regions in the application graph
that can be replicated on multiple hosts, such that each
instance of the replicated region (e.g., hereinafter referred to
as a channel) handles a subset of the data flow to increase
throughput. This form of data parallelization involves detect-
ing parallel regions without direct involvement of the appli-
cation developer and applying runtime mechanisms to ensure
safety. The parallelized application should produce the same
results as a sequential application.

Transparent auto-parallelization that improves perfor-
mance should have some profitability mechanism. In a
streaming data-parallel region, profitability involves deter-
mining the right degree of parallelism, that is, the number of
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parallel channels that are to be used, without explicit involve-
ment of the application developer.

In at least one embodiment of the invention, auto-parallel-
ization is elastic since it makes the profitability decision adap-
tive to runtime dynamics (e.g., changes in workload and
availability of resources).

At least one embodiment of the invention achieves elastic
auto-parallelization in in the presence of stateful operators. A
stateful operator is an operator that performs a function that
relies on state information. For example, if the stateful opera-
tor is configured to generate a tax return, many of its calcu-
lations may depend on the current state of an individual’s
gross income. Thus, if the stateful operator is duplicated so
some of the calculations can be offloaded to the duplicated
operator, the current state of the gross income would need to
be communicated (migrated) to the duplicated operator.
However, migration of such state information can be very
burdensome. Thus, at least one embodiment of the invention
attempts to minimize the amount of state information that
needs to migrated to a stateful operator to minimize time and
space overheads.

At least one embodiment of the invention attempts to pro-
vide a control algorithm to determine the degree of parallel-
ism that exhibits stability (i.e., does not oscillate the number
of channels used), achieves good accuracy (i.e., finds the
number of channels that maximizes the throughput), has a
short settling time (i.e., reaches a stable number of channels
quickly), and avoids overshoot (i.e., does not use more chan-
nels than necessary).

A stateful operator can be partitioned into partitioned state-
ful operators, which store an independent state for each sub-
stream identified by a partitioning attribute. Examples of such
operators include an operator to partition network traces by IP
number, partition financial streams by ticker, etc. Compile-
time re-write techniques can be developed to convert high-
level user code into an equivalent version that use an API that
shields application developers from the details of state migra-
tion.

In at least one embodiment of the invention, an operator is
split using a hashing algorithm, which minimizes the amount
of state information migrated. Further, an embodiment of the
invention relies on two local metrics computed at the splitter:
the congestion (e.g., a measure of blocking time at the split-
ter) and the throughput. The congestion may indicate how
busy a particular operator is.

In an embodiment of the invention, the splitter is a run-time
component that is co-located with the operator that is gener-
ating the stream to be split for parallel processing. The control
algorithm can work at the splitter and use these metrics to
adjust the number of channels to be used for processing the
flow. The algorithm may include peeking up and down in
terms of the number of channels used based on changes in
observed metrics to address accuracy and overshoot; remem-
bering past performances achieved at different operating
points to address stability; and rapid scaling to address set-
tling time.

At least one embodiment of the invention provides an
elastic auto-parallelization scheme that can handle stateful
operators, works across multiple hosts, and is designed for
general purpose stream processing applications.

Embodiments of the invention will be discussed with
respect to the System S middleware and its programming
language SPL for ease of discussion. However, embodiments
of the invention are not limited to any particular middleware
or programming language.

SPL is a programming language used to develop stream
processing languages. SPL applications are composed of
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operator instances connected to each other via stream con-
nections. An operator instance is a vertex in the application’s
data flow graph. An operator instance is a realization of an
operator definition. For example, FIG. 1 shows an instance of
the TCPSource operator 101. In general, operators can have
many different instantiations, each using different stream
types, parameters, or other configurations such as windows.
Operator instances can have zero or more input and output
ports. Each output port generates a uniquely named stream,
which is a sequence of tuples. Connecting an output port to
the input of an operator establishes a stream connection. A
stream connection is an edge in an application’s data flow
graph.

Operators are implemented either directly in SPL or in a
general purpose programming language. These implementa-
tions rely on an event driven interface, which reacts to tuples
arriving on operator input ports. Tuple processing generally
involves updating some operator-local state and producing
result tuples that are sent out on the output ports.

System S is a distributed stream processing engine that can
execute SPL applications using a set of distributed hosts.
System S can perform various runtime tasks, such as data
transport, scheduling, fault-tolerance, and security.

Auto-parallelization is the process of automatically dis-
covering data-parallel regions in an application’s flow graph
which can be exploited at runtime. In addition to discovering
these parallel regions, the compiler establishes certain prop-
erties required to activate appropriate runtime mechanisms
that will ensure safety of the auto-parallelization. For
instance, if a parallel region is determined to be stateless, the
runtime data splitting mechanism to be applied can be round-
robin, whereas if the region is partitioned stateful, the data
splitting is performed using a hash-based scheme.

FIG. 2 illustrates sample SPL code 200 for an exemplary
auto-parallelization process named OpMon. An instance of
the TCPSource operator 101 is used to receive a stream that
contains information about network usage of different appli-
cations. This is followed by an Aggregate operator instance
102, which computes minute-by-minute data usage informa-
tion for each application, using an application identifier (e.g.,
appld) as the partitioning key. In FIG. 1(a) the aggregated
results are taken through a Filter operator 103 to retain appli-
cations whose network usage is beyond a threshold. Finally,
the end results are sent to a TCPSink operator instance 104.

In FIG. 1(b) the Aggregate operator 102 and filter operator
103 are duplicated to form a parallel region including parallel
channels, where each parallel channel contains a copy of the
aggregate operator and the filter operation. For example, FIG.
1(b) illustrates ‘n’ parallel channels including a first parallel
channel (e.g., 102-1 and 103-1), a second parallel channel
(e.g., 102-2 and 103-2), and an n” parallel channel (e.g.,
102-7 and 103-7).

In this example, there is an additional operator TCPSink
104 that follows the parallel region. Further, since the opera-
tor TCPSink 104 may not be able to tolerate out of order
results, the parallel region needs to maintain the order of
tuples at its output. This is achieved at the merger 106, which
resides on the input port of the operator succeeding the par-
allel region. The merger 106 performs are-ordering operation
using sequence numbers which were assigned at the splitter
105 and carried through the parallel region.

This parallel region contains Filter operators 103-1,
103-2,...,103-zthat can drop some of the tuples. This results
in a selectivity value of at most 1. This may cause the merger
106 to block for long periods of time, if the tuples for a given
channel happen to get dropped with a higher frequency than
others. This is because during times of no tuple arrival, the
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merger 106 cannot differentiate between tuples that take a
long time to arrive and tuples that will never arrive (dropped).
Accordingly, in at least one embodiment of the invention, the
parallel region uses pulses, which are special markers peri-
odically sent by the splitter 105 and used by the merger 106 to
avoid lengthy stalls.

At least one embodiment of the invention makes the prof-
itability decision (e.g., determines whether it is more profit-
able to increase or decrease the level of parallelism) at runt-
ime, where information regarding workload and resource
availability can be inferred. When an application starts its
execution, the number of parallel channels is set to a pre-
defined value (e.g., 1). A control algorithm is placed as the
splitter 105 periodically re-evaluates the number of channels
to be used based on local run-time metrics it maintains. The
control algorithm can decide to increase or decrease the num-
ber of channels used based or take no action. When the num-
ber of channels to use changes, then a state migration protocol
can be executed if the parallel region is stateful.

For parallel regions that are partitioned stateful, changing
the number of parallel channel necessitates partial relocation
of state information. For instance, if the number of parallel
channels increases, then the assignment of some of the parti-
tions needs to move from the existing parallel channels to the
new parallel channels. Whenever such change of assignment
happens at the splitter 105, the state information associated
with the moved partitions has to be relocated as well. In
particular, the newly added parallel channels need to borrow
state information of the partitions assigned to them from the
existing parallel channels. Similarly, when existing channels
are removed, the state information associated with the parti-
tions they were handling has to be redistributed to the existing
parallel channels.

In an exemplary embodiment, where each partition is
owned by a single parallel channel, partitions are assigned to
parallel channels using consistent hashing to minimize the
amount of state information moved during migration.

As discussed above, the control algorithm performs a peri-
odic evaluation to determine whether to increase or decrease
the current level of a parallelism. In an exemplary embodi-
ment of the invention, the control algorithm relies on two
locally generated metrics, namely Congestion and Through-
put.

Congestion is an indication of whether the splitter 105
observes an undue delay when sending tuples on a connec-
tion. Presence of congestion may be an indication that more
channels are needed to handle the current load. Similarly, lack
of'congestion may be an indication that too many channels are
being used. For example, in an optimal situation, a channel is
busy, but not overly burdened or underused. Temporal
changes in the congestion value can indicate changes in the
workload availability. For example, if several parallel chan-
nels have a moderate congestion (i.e., busy, but not overly
burdened or underused) at a first time and then each of the
channels have a minimal congestion (i.e., underused) at a
second time, one can infer that the overall workload has
decreased considerably.

The congestion can be computed by using non-blocking
1/O for transferring tuples. For example, a blocking period
can be calculated from a difference between a first time a send
call provides a notification that the call would block and a
second time the send call provides a notification that room is
available. The congestion value can then be based on the
measured blocking period as it compares to comparison
thresholds or ranges. For example, if the blocking period is
more than one second it could be deemed a congestion value
of' 1 (i.e., indicating excessively congested), if the blocking
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period is between 0.5 second and 1 second it could be deemed
a congestion value of 0.5 (i.e., moderately congested), and if
the blocking period is less than 0.5 seconds, it could be
deemed a congestion value of O (i.e., minimal congestion).
Please note that the above-provided comparison thresholds/
ranges are merely examples as the calculation of congestion is
not limited to any particular threshold/range.

Throughput is the number of tuples processed per second
over the last adaptation period. For example, at a given time
when the number of channels has been increased or decreased
(e.g., a particular operating point), a current throughput com-
pared to a previous throughput can indicate whether through-
put has improved. Further, temporal changes in throughput
can indicate changes in the workload. For example, if
throughput typically averages 10,000 tuples per second and
then begins averaging 1,000 tuples per second, it can be
inferred that the workload has been decreased considerably.

At least one embodiment of the invention increases the
level of parallelism if congestion is present unless that
increase was already tried and it was not found to be benefi-
cial and decreases the level of parallelism if no congestion is
present unless that decrease was already tried and it was not
found to be beneficial.

FIG. 3 illustrates a method for controlling the number of
parallel channels according to an exemplary embodiment of
the inventive. Initially, the method begins with a certain num-
ber of channels N, (e.g., 2) (S301). Next, the method forgets
obsolete information (S302). For example, if it was previ-
ously determined that a current congestion level indicates that
the workload has changed, the prior snapshots of the previous
congestion levels are deleted. Similarly, if a current through-
put level indicates that the workload has changed, the prior
snapshots of the previous throughput levels are deleted.

Next, the method determines whether the current number
of channels in use (e.g., 2) are congested (e.g., being over-
worked) (S303). If the current number of channels in use are
not congested (e.g., under utilized), the method determines
whether the previous lower number of channels (e.g., 1) was
congested (e.g., overworked) (S304).

If the previous lower number of channels was not con-
gested (e.g., under utilized), the method decreases the level of
parallelism by reverting to the previous lower number of
channels (e.g., 1) (S309). If the previous lower number of
channels was also congested, the current level of parallelism
is maintained since using a lesser number of channels will not
improve congestion.

Ifthe current number of channels in use was congested, the
method determines whether this congestion is remote con-
gestion (S305). Remote congestion means that the congestion
is attributed primarily due to an application/process that is
external to the parallel operators. If it is determined that the
congestion is attributed to the remote congestion, the method
decreases the level of parallelism by reverting to the previous
lower number of channels (S306). This step avoids the case
where the number of channels is continuously increased due
to the continued presence of congestion, yet the throughput
does not improve. Since the only congestion left is due to
remote congestion, the streaming application has hit a scal-
ability limit. For example, the original bottleneck introduced
by the streaming application has been removed due to paral-
lelization and the bottleneck has moved to a non-paralleliza-
tion portion (e.g., the source or sink of some stateful operator)
of the application.

If it is determined that the congestion is not attributed to
remote congestion, the method determines whether the
throughput at a next higher number of channels is higher than
the current amount of throughput or unknown (S307). For
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example, if the next higher number of channels (e.g., 3) was
never used or the corresponding throughput data became
obsolete, this data would not be present. If the throughput at
the next higher number of channels is higher than the current
amount of throughput or unknown, the method increases the
level of parallelism by increasing the number of channels
(e.g., to 3) (S308). However, if the throughput at the next
higher number of channels is the same or lower, the method
maintains the current level of parallelism.

In cases where the available resources (e.g., execution con-
texts such as hosts and cores) and the cost of the parallel
region are both high, the optimal number of channels can be
high as well. Thus, in practice it could take a long time for the
above-described control algorithm illustrated in FIG. 3 to
reach this number. This is due to the one-channel-at-a-time
nature of the algorithm. In an alternate embodiment of the
algorithm of FIG. 3, rapid scaling is introduced. In rapid
scaling, rather than operating (e.g., increasing/decreasing)
one-channel-at-a-time, one can operate (e.g., increase/de-
crease) one-level-at-a-time, where a super-linear mapping is
defined between the number of levels and channels. For
example, one level can correspond to more than one channel.
For example, in this way steps S306, S308, and S309, can
increase/decrease the current number of channels by more
than one. Rather, than using the number of channels as the
operating point, the method of FIG. 3 can use a level, which
is mapped to the number of channels via function N;. In an
exemplary embodiment of the invention, the function N; is
defined by Equation 1 as follows:

N, =[0.5+2035"&+1y] [Equation 1].

If the above function N, is used, for increasing level L
values starting at 0 (1 by 1) results in the following series of
number of channels: {1,2,3,4,6,8,11,16,23,32, ... }. Thus,
if the method of FIG. 3 were to determine that is necessary to
increase the level of the parallelism in five steps, the first three
steps would increase the number of channels by 1 and the next
two steps would increase the number of channels by 2. How-
ever, embodiments of the invention are not limited to any
particular function N; since it is possible to use other func-
tions that follow a steeper or less steep curve depending on the
maximum number of channels and the settling time require-
ments.

In an exemplary embodiment, the method of FIG. 3 is
implemented as a computer program that stores three state
variables. FIG. 4 illustrates an example of the program 400
including initialization code 401 to initialize the state vari-
ables, first code 402 to update the number of channels, and
second code 403 to detect workload changes. The first code
takes as input parameters the current throughput (T) and the
current congestion status (C).

The first state variable P is the current adaptation period.
The second state variable L represents the current level. The
third state variable is an array that stores information for each
level, namely the last adaptation period P, during which the
algorithm was at this level, whether congestion, denoted C,
was observed the last time the algorithm was at this level, the
throughput T,” observed the last time the algorithm was at
this level, and the throughput T, '~ observed during the first of
the periods the last time the algorithm stayed consecutive
periods at this level. The parameter L.* denotes the maximum
number of levels.

The program 400 has a global parameter called change
sensitivity, denoted by o, which determines what a significant
change means and takes a value in the range [0, 1]. A value of
1 means the algorithm is very sensitive to small changes in the
throughput. For instance, a minor improvement in throughput
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will be sufficient to increase the number of channels if the
sensitivity is high. In an exemplary embodiment, all changes
in throughput are normalized against the ideal throughput for
a single channel in a linearly scaling system.

The second code 403 includes code 403-A to detect load
changes based on congestion status. If the current level and
the last level are the same, yet the congestion status has
changed, this is taken as an indication of load change (e.g.,
load increased if there is congestion currently, load decreased
otherwise). If the current level is lower than the last one, yet
the congestion has disappeared, this is taken as a load
decrease. Ifthe current level is higher than the last one, yet the
congestion has appeared, this is taken as a load increase. The
second code includes code 403-B to detect load changes
based on throughput. If the current level and the last level are
the same, yet there is a significant change in the throughput,
this is taken as an indication of load change (e.g., load
increase if the current throughput is higher, load decrease
otherwise). Change sensitivity is used to detect significant
change relative to the ideal change in a linearly scaling sys-
tem. If the current level is lower than the last one, yet the
throughput has increased, this is taken as a load increase. If
the current level is higher than the last one, yet the throughput
has decreased, this is taken as a load decrease.

A state management application programmer interface
(API) can be developed for use by a compiler when generat-
ing code for an elastic operator to enable elastic parallelism.
The API may include a partitioned state clause to specify the
list of state variables to be maintained on a per-partition basis
and a partitionBy parameter to specify the partitioning
attribute to be used for the partitioned state. For operators that
are developed in general purpose programming languages,
such as C++ and Java, the API may be provided as a native
interface.

As discussed previously, when the number of channels is
increased it may be necessary to migrate state information
from an existing operator corresponding to the lower number
of'channels to a new operator that is created by increasing the
number of channels. A migration protocol may be executed
for a parallel region (e.g., the set of operators corresponding
to the current number of channels) in response to the deci-
sions made at the splitter 105 by the control algorithm (see
method FIG. 3). When the control algorithm updates the
number of channels, it also updates the data partitioning
function it uses to distribute the partitions among the parallel
channels and initiates the migration protocol. The migration
is only needed for the case of partitioned stateful parallel
regions. The migration protocol is initiated by sending a
migration pulse from the splitter 105 to all parallel channels.
When an operator in a parallel channel receives a migration
pulse, it first forwards the pulse downstream and then starts
executing the per-operator migration protocol. This makes it
possible to execute migration of state information between
replicas of multiple operators in parallel, in case the parallel
region contains more than one partitioned stateful operator.

An exemplary embodiment of a migrate routine 500 illus-
trated in FIG. 5 provides pseudo-code for the migration pro-
tocol executed by an operator. There are four input parameters
to the routine. The first is the index of the operator’s parallel
channel, denoted by i. The second is the new operating point
in terms of the number of channels, denoted by N. The third
is the state kept locally at this operator, which consists of a list
of managed stores, denoted by S, where s *eS, denotes one of
the stores. The last is the data partitioning function generator,
which generates a data partitioning function given the number
of parallel channels, denoted by H. The protocol has two
phases, namely the lend phase and the borrow phase.
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In the lend phase, the items that do not belong to the current
operator after the data partitioning function has been updated
based on the new number of channels, are collected into a
package Aiejk, which represents the set of data items in s,’
that needs to migrate from the operator replica running on the
i* channel to replicate running on the j* channel. These items
are removed from the in-memory store s,*. The resulting
packages are stored on a backing store and then a vertical
barrier is performed across replicas of the operator. This
ensures that all replicas complete the lend phase before the
borrow phase starts.

In the borrow phase, packages in the backing store that are
destined to the current operator replica are retrieved and the
in-memory stores are updated. For instance, items in package
Ajeik are added to the store s,*. A vertical barrier is performed
to ensure all replicas have completed the borrow phase. Once
complete, a horizontal barrier is performed, in order to ensure
that the splitter does not start sending tuples before the migra-
tion is complete. This barrier is performed across the master
operator replicas (at index 0) and the splitter.

FIG. 6 illustrates a parallel region with 2 operators (e.g.,
102 and 103) and N parallel channels. During a vertical bar-
rier each operator synchronizes with its N-1 replicas,
whereas during a horizontal barrier the 2 operators on channel
0 synchronize with the splitter. This implementation of the
migration protocol works across multiple machines and does
not rely on shared memory. It at least one embodiment of the
invention, the implementation makes use of a back-end data-
base for state information movement and synchronization.
Alternative implementations are possible (e.g., sockets or a
message passing interface MPI). While FIG. 6 illustrates a
parallel region with 2 operators, in alternate embodiments,
the parallel region could have a single operator or more than
2 operators.

Data partitioning is performed at the splitter 105 for parti-
tioned stateful regions. The partitioning function of the split-
ter 105 needs be updated when the number of parallel chan-
nels changes. The choice of the partitioning function impacts
the cost of the migration, as it changes the amount of migrated
state information. The partitioning function can apply a hash
function on the partitioning attributes and mod the result
based on the number of channels. However, this data parti-
tioning function may result in massive state information
migrations and movement of some partitions across channels
that are present both before and after the migration.

Thus, a data partitioning function according to at least one
embodiment of the invention provides good balance and
monotonicity. Balance ensures that the partitions are uni-
formly distributed across channels, achieving good load bal-
ance. Monotonicity ensures that partitions are not moved
across channels that are present before and after the migra-
tion. Consistent hashing is a technique that provides these
properties. Consistent hashing maps each data item to a point
on a 128-bit ring in uniformly random fashion. Similarly,
each channel is also mapped to the same ring, but rather than
to a single point, each channel is mapped to multiple points on
the ring (using multiple hash functions). A data item is
assigned to the channel that is closest to it on the ring. As a
result of this scheme, when a new channel is inserted, it
borrows data items from multiple of the existing channels.
Similarly, when a channel is removed, its data items are
distributed over multiple of the existing channels. Consistent
hashing ensures that on average MIN partitions are moved
when the Nth channel is inserted or removed from a system
with M partitions. Consistent hashing can be implemented in
O(1) time by dividing the ring into segments, yet it is slightly
more costly to compute as compared to a simple hashing

10

15

20

25

30

35

40

45

50

55

60

65

10

scheme. However, it minimizes the amount of state informa-
tion to be moved during migration.

While the inventive concept has been described with
respect to a parallel region including an aggregate operator
and a filter operator, the inventive concept is not limited to any
particular set of operators or functions thereof. For example,
FIG. 7 shows a generic example, where the first parallel
channel includes two operators F, and X, , the second parallel
channel includes two operators F, and 2, the third parallel
channel includes operators F, and X, and the n? operator
includes two operators FN and 2N. As discussed above, a
parallel region may only include a single operator (e.g., only
F,-FN). FIG. 7 additionally illustrates a storage 700 that is
used to store state information from an operator that needs to
be migrated to another operator in a parallel channel. The
operators can store and retrieve state information from the
shared storage 700. If the number of channels is to change, the
existing operators need to store their state information in the
storage 700 beforehand. If the number of channels is then
increased, the new operator can retrieve any necessary state
information from the storage 700. If the number of channels
is instead decreased, then the remaining operators can
retrieve state information from the storage 700 that was being
retained by the deleted operator. A barrier can be used to delay
the deletion of an operator until it has had time to store its state
information in the storage 700. A barrier can also be used to
delay propagation of data to a set of the operators (F,-FN)
until after they have retrieved the necessary state information
from the storage 700.

FIG. 8 illustrates a method for dynamically adjusting the
number of parallel channels for a data parallel region of a
stream processing application according to an exemplary
embodiment of the invention. The method includes: measur-
ing the congestion of each parallel channel at a current period
and maintaining a history (S801), measuring the total
throughput of all parallel channels at the current period and
maintaining a history (S802), and adjusting the number of
channels based on the current and historical measurements of
congestion and throughput (S803).

In at least one embodiment, the adjusting of the number of
channels includes a splitter communicating to existing paral-
lel channels to start state migration, each channel determining
what state information it needs to retain and sending that state
information to other channels that need this state information,
and each channel receiving the state information that it needs.

In an exemplary embodiment, the adjusting of the number
of channels includes increasing the number of channels only
if there is current congestion that is not remote congestion,
and there is no historical throughput data for the higher num-
ber of channels.

In an exemplary embodiment, the adjusting of the number
of channels includes increasing the number of channels only
if there is current congestion that is not remote, and the
historical throughput indicates that it is profitable to increase
the number of channels. For example, if throughput in the past
has improved by increasing the current number of channels,
then it makes sense to once again increase the current number
of channels.

In an exemplary embodiment, the adjusting of the number
of channels includes decreasing the number of channels if
there is current congestion and the congestion is remote. For
example, if the number of channels was previously increased,
and it could not remove the current congestion because it is
remote congestion, the number of channels can be decreased.

In an exemplary embodiment, the adjusting of the number
of channels includes decreasing the number of channels only
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if there is no congestion, and the historical data indicates that
there was congestion at the lower number of channels.

In an exemplary embodiment, the adjusting of the number
of channels maintains the same number of channels if there is
no current congestion, and the historical data indicates that
there was congestion at the lower number of channels.

In an exemplary embodiment, the adjusting of the number
of channels maintains the same number of channels if there is
current congestion that is not remote congestion, and the
historical data indicates that it is not profitable at the higher
number of channels. Thus, even though the congestion is not
remote, since in the past increasing the number of channels
has not improved this local congestion, the number of chan-
nels can be kept at their current value.

The method can adapt to work load changes by selectively
forgetting the historical measurements of congestion and/or
throughput that have become obsolete. For example, if the
measurements were taken at one workload level, and the
workload has since changed, the old measurements should be
disregarded. In an exemplary embodiment, if the workload
has increased (e.g., by more than a certain threshold), the
measurements for the historical congestion and throughput
from the higher number of channels is discarded. In another
exemplary embodiment, if the workload has decreased (e.g.,
by more than a certain threshold), the measurements for the
historical congestion and throughput from the lower number
of channels is discarded.

The above described operators may be computer software
threads or computer processes.

FIG. 9 illustrates an example of a computer system, which
may execute any of the above-described operators, methods
or computer programs, according to exemplary embodiments
of'the invention. For example, the operators of FIGS. 1, 6, and
7, the code of FIGS. 2, 4, and 5, and the methods of FIGS. 3
and 8 may be implemented in the form of a software appli-
cation running on the computer system. Further, portions of
the methods may be executed on one such computer system,
while the other portions are executed on one or more other
such computer systems. Examples of the computer system
include a mainframe, personal computer (PC), a handheld
computer, a server, etc. The software application may be
stored on a computer readable media (such as hard disk drive
memory 1008) locally accessible by the computer system and
accessible via a hard wired or wireless connection to a satel-
lite or a network, for example, a local area network, or the
Internet, etc.

The computer system referred to generally as system 1000
may include, for example, a central processing unit (CPU)
1001, random access memory (RAM) 1004, a printer inter-
face 1010, a display unit 1011, a local area network (LAN)
data transmission controller 1005, a LAN interface 1006, a
network controller 1003, an internal bus 1002, and one or
more input devices 1009, for example, a keyboard, mouse etc.
As shown, the system 1000 may be connected to a data
storage device, for example, a hard disk 1008 (e.g., a digital
video recorder), via a link 1007. CPU 1001 may be the com-
puter processor that performs the above described methods.

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present disclosure may
take the form of a computer program product embodied in one
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ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be acomputer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a por-
table compact disc read-only memory (CD-ROM), an optical
storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document,
a computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device. Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present disclosure are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
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ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
disclosure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

What is claimed is:

1. A method for adjusting a data parallel region of a stream
processing application, the method comprising:

measuring congestion of each parallel channel of the data

parallel region;

measuring a total throughput of all the parallel channels;

and

adjusting the number of parallel channels based on the

current measured congestion and throughput,

wherein each parallel channel comprises a same sequence

of at least one software operators that perform opera-
tions on a stream of data received from a same input
software operator,

wherein the measured congestion of a given channel indi-

cates a utilization level of the channel, and

wherein the adjusting comprises:

increasing the number of channels if the current mea-
sured congestion is above a threshold and it is not
primarily attributed to an application that is external
to the operators; and

decreasing the number of channels if the current mea-
sured congestion is above the threshold and it is pri-
marily attributed to an application that is external to
the operators.

2. The method of claim 1, wherein the adjusting further
comprises a splitter routine of the stream processing applica-
tion indicating to each operator to begin migration of state
information.

3. The method of claim 2, wherein the adjusting further
comprises each operator performing:

determining what state information presently being main-

tained by the operator will be needed by the other opera-
tors; and

sending the determined state information to the other

operators.

4. The method of claim 3, wherein the sending comprises
each operator storing the determined state information in a
storage that is accessible by all the operators.
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5. The method of claim 1, wherein the increasing only
occurs when historical measurements of the throughput do
not include measurements for the higher number of channels.
6. The method of claim 1, wherein the increasing only
occurs when historical measurements of the throughput indi-
cate it is profitable to perform the increase.
7. The method of claim 1, wherein the adjusting comprises
decreasing the number of channels if the current congestion is
below the threshold and historical measurements of the con-
gestion do not include measurements for the lower number of
channels.
8. The method of claim 1, wherein the adjusting comprises
maintaining the same number of channels if the current con-
gestion is below the threshold and historical measurements of
the congestion indicate that the lower number of channels
have a congestion above the threshold.
9. The method of claim 1, wherein the adjusting comprises
maintaining the same number of channels if the current con-
gestion is above the threshold, the current congestion is not
primarily attributed to an application that is external to the
operators, and historical measurements of the throughput
indicates that it is not profitable to increase the number of
channels.
10. The method of claim 1, wherein the adjusting com-
prises:
discarding some historical measurements of the conges-
tion and the throughput when a current measure of work-
load differs from a previous measure of workload; and

adjusting the number of parallel channels based on the
current measured congestion and throughput and the
remaining historical measurements.
11. The method of claim 10, wherein the historical mea-
surements of congestion and throughput from a higher num-
ber of channels are discarded when the current measure of
workload is higher than the previous measure.
12. The method of claim 10, wherein the historical mea-
surements of congestion and throughput from a lower number
of channels are discarded when the current measure of work-
load is lower than the previous measure.
13. The method of claim 1, wherein measuring the conges-
tion for a given channel comprises calculating a blocking
period from a difference between a first time a send call across
the channel provides a notification that the call will block and
a second time the send call across the channel provides a
notification that room is available.
14. A method of adjusting a level of parallelism of an
application operating on a system, the method comprising:
determining a current number of software operators of the
application for executing a same task on a stream of data;

determining a congestion level of the system using the
current number of software operators, wherein the con-
gestion level is based on a utilization level of each opera-
tor;

increasing the current number of software operators of the

application if the congestion level exceeds a threshold;
and
decreasing the current number of software operators if the
congestion level does not exceed the threshold,

wherein determining the congestion level comprises cal-
culating a blocking period from a difference between a
first time a send call across a channel of the system
provides a notification that the call will block and a
second time the send call across the channel provides a
notification that room is available.
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15. The method of claim 14, further comprises:

determining whether the congestion level of the system has
improved after increasing the current number of opera-
tors; and

decreasing the current number of operators if the conges- 5
tion level has not improved.

16. The method of claim 14, wherein the operators are

software threads.

17. The method of claim 14, wherein the operators are
distinct computer processes. 10
18. The method of claim 14, wherein the increasing only

occurs if the congestion level is not primarily attributed to an
application that is external to the operators and the method
further comprises decreasing the current number of software
operators if the current congestion level exceeds the threshold 15
and is primarily attributed to an application that is external to
the operators.



